VisualCron API

VALY U | (0o o 1Y o SRR
T oo 1Y =T PP P PP PPPPTPPPRRRPN
1600 11V I U] o o Yo PSPPI

AV LS SN = - [o] o] [PR
[V =T SR ole Yo [T T Y] L= SR
Yol o1 =Tt U TSR
(0] oT=Tot f s T o 1] USSP
IMIEENOAS ..ttt st st st ettt et e bt et e bt e b e e be e e reeereesne e eenneenneen

[20=T0 0 [0] (I O PP PP P PP PP PP PPPPPP PPN
Lo T T =T g =T) AU P PP PPPPPPPPPPPPPPPR
o= o E TP PP UPPTPPPPPPPTON
LG LY =8 = (=T PR
=100 o] (=PSRRIt
D To ol g gT=T0] =1 4 Lo RN PP PP PP PP PPPPPPPPPPPPPPR

SUPPOIT & QUESTIONS ...uvvreeieieeiiiiiieeeeeeeeectreeeeeeeeeeitareeeeeesesetsrareeeeeeeasabssaeesesesassssasesessesassssasesessrnsssses

Purpose

Allow local or remote applications to access the functionality in the VisualCron server through an
easy-to-use interface.

COM support
The APl is not only for .NET usage. You can use any other language that supports COM. Here are the
steps you need to perform besides the normal Requirements. First, download REGASM tool:

http://msdn.microsoft.com/en-us/library/tzat5yw6(VS.80).aspx

VB6 example

1. Copy VisualCron.dll and VisualCronAPI.dll to folder where you have your vb.exe
(if you are debugging use C:\Program Files\Microsoft Visual Studio\VB98 (where vb6.exe
resides)).

2. Run regasm.exe on VisualCron.dll and VisualCronAPl.dll like this: regasm
VisualCron.dll /tlb:VisualCron.tlb

3. Add reference in Project->References to both *.tlb files

4, Write your code

5. Run or build output file

6. When moving your output file you need to include the two *.dll files

7. You can safely remove *.dll and *.tlb files from C:\Program Files\Microsoft
Visual Studio\VB98 folder

8. In order to upgrade to a new version you need to perform step 1 and 2

VB6 code sample

Private Sub Form_Load()
Dim c As New VisualCronAPI_Client
Dim s As VisualCronAPI_Server

Dim conn As New Connection
conn.ConnectionType = ConnectionT_Local
Set s = c.Connect(conn, True)
MsgBox s.InSync

End Sub

Architecture

There are 3 important files when you are working with the API:

e VisualCron.dll — this file contain all shared class objects that a Client and Server should know
about. For example, you have the base class JobClass which contains all member of a
JobClass. Detailed information of member are available in the help file VisualCron.chm

e VisualCron_nat.dll —this file is a protector file to VisualCron.dll and should just remain in the
same directory as VisualCron.dl|

e VisualCronAPI.dIl - this file is core for the API. You reference to this file and get access to all
functions regarding Connecting to a Server and modify objects on the Server.

Object model

As you can see in the sample(s) you use a Client-object to Connect to a VisualCron Server. What
happens is that, upon successful connection, all Server objects are transferred to the Client. When
that “sync”-procedure is done the Client will return a Server-object. The Server-object is a direct
access object to all the Server functions. You can Add Jobs, Tasks and Update all kind of information
in the Server that you are connected to. Here is the current Server model:

Server
Jobs
Conditions
Connections
Credentials
Motifications
Permissions
Processes
TimeExceptions
License

ConnectionHandler {(Connecktion)

During the connection you will receive updates from the Server. When a Job changes you will get
that change and your Jobs in the Jobs object will be updated.

Methods

All objects (Jobs,Conditions,Connections etc.) share almost the same methods:
e Get —return a specific object based on Id
e GetAll -returns all objects
e Add - adds a new object
e Update — updates a new object

e Remove —removes an object

e RemoveAll —removes all objects
Basically, you access those from the Server object like this (which you can see in the samples):

Server.Jobs.Add(JobClass)

Jobs Class
Yamespaces » VisualCron&FI = Jobs & -
All Members Constructors Methods Froperties Events a
v Public ¥ Instance ¥ Declared
¥ Protected I¥ Static I¥ Inherited
Icon Member Description
W Activate(JobClass) Activates a Job
W Activate(String) Activates a job
W Add(JobClass) Addss a Job
W Contains(String) Returns true if Job id exist
W Defctivate(lobClass) Deactivates a Job
W Defctivate(String) Deactivates a Job
% DoJobMNameExist{String) Checks if name of Job already exists
el Frnaleftihisart Natermines wheathar the znecified Mhisrt iz aanal tn the
Events

To know exactly when a Job updates you can add one or more of the public events. There are public
events to all kind of objects in the Server which have almost the same features:

public class Job= : Joba._ Jobs

= Members
All Members Constructors Methods Froperties Events

v Instance v Declared

v Static v Inherited
Icon Member Description
_;g EventlobRemovedStatic This event is raised when a Job has beenremowed
& Jobadded This event is raised when a Job has been added
_;g JobaddedStatic This event is raised when a Job has been added
& JobRemowved This event is raised when a Job has beenremowed
o JobUpdated Thi=z event is raised when a Job has been updated
_;g JobUpdatedStatic Thi=z event is raised when a Job has been updated

There are both static and non-static events. For example, if your Client is connected to many Servers
you may want to use the static event to get all Server events.

Communication

Different connection types exist where “local” is the primary.

Local

Local uses a connection type IPC. The server “listens” to a predefined pipe. The “client” creates a
dynamic pipe from its id. The server is always fixed the client is dynamic so many clients can exist on
one machine. At connect time it gives the server its own pipe address so that the server can answer
back. The server keeps track of all clients from a dictionary. If it fails to send a message to the client
the client is disconnected and removed from the dictionary. The local Connection is about 10x faster
than the remote connection that uses sockets for the underlying communication.

Remote

The remote connection uses secure sockets for communication. By default, the server is listening to
port 16444. This may previously have been changed by you. You can see which port to use (and
change it) by opening the server settings. You need to specify Address property of Connection if you
want to connect remotely.

Requirements

e NET Framework 2.0
e Thefiles in the API folder of the VisualCron install

License
You may use the API for free. To connect to the VisualCron Server you need a valid license installed —
on the Server.

Getting started

Samples

Samples of how to connect, retrieve and change certain information exist in the samples folder.

Documentation

The documentation for the APl is divided into several parts:
e This document

e A help file containing APl reference to VisualCron classes (VisualCron.dll) and VisualCron API
(VisualCronAPI.dll)

Support & Questions

Please use the forum for further dialog and if you have questions, found bugs, have enhancement
requests etc.

